skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "King, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aggarwal, Divesh (Ed.)
    We study the problem of function inversion with preprocessing where, given a function f : [N] → [N] and a point y in its image, the goal is to find an x such that f(x) = y using at most T oracle queries to f and S bits of preprocessed advice that depend on f. The seminal work of Corrigan-Gibbs and Kogan [TCC 2019] initiated a line of research that shows many exciting connections between the non-adaptive setting of this problem and other areas of theoretical computer science. Specifically, they introduced a very weak class of algorithms (strongly non-adaptive) where the points queried by the oracle depend only on the inversion point y, and are independent of the answers to the previous queries and the S bits of advice. They showed that proving even mild lower bounds on strongly non-adaptive algorithms for function inversion would imply a breakthrough result in circuit complexity. We prove that every strongly non-adaptive algorithm for function inversion (and even for its special case of permutation inversion) must have ST = Ω(N log (N) log (T)). This gives the first improvement to the long-standing lower bound of ST = Ω(N log N) due to Yao [STOC 90]. As a corollary, we conclude the first separation between strongly non-adaptive and adaptive algorithms for permutation inversion, where the adaptive algorithm by Hellman [TOIT 80] achieves the trade-off ST = O(N log N). Additionally, we show equivalence between lower bounds for strongly non-adaptive data structures and the one-way communication complexity of certain partial functions. As an example, we recover our lower bound on function inversion in the communication complexity framework. 
    more » « less
  2. null (Ed.)
    We present methods for implementing arbitrary permutations of qubits under interaction constraints. Our protocols make use of previous methods for rapidly reversing the order of qubits along a path. Given nearest-neighbor interactions on a path of length n , we show that there exists a constant ϵ ≈ 0.034 such that the quantum routing time is at most ( 1 − ϵ ) n , whereas any swap-based protocol needs at least time n − 1 . This represents the first known quantum advantage over swap-based routing methods and also gives improved quantum routing times for realistic architectures such as grids. Furthermore, we show that our algorithm approaches a quantum routing time of 2 n / 3 in expectation for uniformly random permutations, whereas swap-based protocols require time n asymptotically. Additionally, we consider sparse permutations that route k ≤ n qubits and give algorithms with quantum routing time at most n / 3 + O ( k 2 ) on paths and at most 2 r / 3 + O ( k 2 ) on general graphs with radius r . 
    more » « less
  3. null (Ed.)
    Card-not-present credit card fraud costs businesses billions of dollars a year. In this paper, we present Boxer, a mobile SDK and server that enables apps to combat card-not-present fraud by scanning cards and verifying that they are genuine. Boxer analyzes the images from these scans, looking for telltale signs of attacks, and introduces a novel abstraction on top of modern security hardware for complementary protection. Currently, 323 apps have integrated Boxer, and tens of them have deployed it to production, including some large, popular, and international apps, resulting in Boxer scanning over 10 million real cards already. Our evaluation of Boxer from one of these deployments shows ten cases of real attacks that our novel hardware-based abstraction detects. Additionally, from the same deployment, without letting in any fraud, Boxer’s card scanning recovers 89% of the good users whom the app would have blocked. In another evaluation of Boxer, we run our image analysis models against images from real users and show an accuracy of 96% and 100% on the two models that we use. 
    more » « less